26 research outputs found

    Quantitative Flood Forecasting on Small- and Medium-Sized Basins: A Probabilistic Approach for Operational Purposes

    Get PDF
    Abstract The forecast of rainfall-driven floods is one of the main themes of analysis in hydrometeorology and a critical issue for civil protection systems. This work describes a complete hydrometeorological forecast system for small- and medium-sized basins and has been designed for operational applications. In this case, because of the size of the target catchments and to properly account for uncertainty sources in the prediction chain, the authors apply a probabilistic framework. This approach allows for delivering a prediction of streamflow that is valuable for decision makers and that uses as input quantitative precipitation forecasts (QPF) issued by a regional center that is in charge of hydrometeorological predictions in the Liguria region of Italy. This kind of forecast is derived from different meteorological models and from the experience of meteorologists. Single-catchment and multicatchment approaches have been operationally implemented and studied. The hydrometeorological forecasting chain has been applied to a series of case studies with encouraging results. The implemented system makes effective use of the quantitative information content of rainfall forecasts issued by expert meteorologists for flood-alert purposes

    Application of an integrated hydrological nowcasting chain on Liguria Region

    Get PDF
    PresentaciĂłn realizada en la 3rd European Nowcasting Conference, celebrada en la sede central de AEMET en Madrid del 24 al 26 de abril de 2019

    Explicit representation of subgrid heterogeneity in a GCM land-surface scheme

    Get PDF
    Permission to place copies of these works on this server has been provided by the American Meteorological Society (AMS). The AMS does not guarantee that the copies provided here are accurate copies of the published work. © Copyright 2003 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or [email protected] the treatment of subgrid-scale soil moisture variations is recognized as a priority for the next generation of land surface schemes. Here, the impact of an improved representation of subgrid-scale soil moisture heterogeneity on global climate model (GCM) simulations of current and future climates is carried out using Version three of the Hadley Centre Atmospheric Climate Model (HadAM3) coupled to the Met Office Surface Exchange Scheme (MOSES). MOSES was adapted to make use of the rainfall runoff model TOPMODEL algorithms, which relate the local water table depth to the grid box mean water table depth, assuming that subgrid-scale topography is the primary cause of soil moisture heterogeneity. This approach was also applied to produce a novel model for wetland area, which can ultimately be used to interactively model methane emissions from wetlands. The modified scheme was validated offline by forcing with near-surface Global Soil Wetness Project (GSWP) data, and online within the HadAM3 global climate model. In both cases it was found to improve the present-day simulation of runoff and produce realistic distributions of global wetland area. (Precipitation was also improved in the online simulation.) The new scheme results in substantial differences in the modeled sensitivity of runoff to climate change, with implications for the modeling of hydrological impacts

    Comparison of two early warning systems for regional flash flood hazard forecasting

    Get PDF
    The anticipation of flash flood events is crucial to issue warnings to mitigate their impact. This work presents a comparison of two early warning systems for real-time flash flood hazard forecasting at regional scale. The two systems are based in a gridded drainage network and they use weather radar precipitation inputs to assess the hazard level in different points of the study area, considering the return period (in years) as the indicator of the flash flood hazard. The essential difference between the systems is that one is a rainfall-based system (ERICHA), using the upstream basin-aggregated rainfall as the variable to determine the hazard level, while the other (Flood-PROOFS) is a system based on a distributed rainfall-runoff model to compute the streamflows at pixel scale. The comparison has been done for three rainfall events in the autumn of 2014 that resulted in severe flooding in the Liguria region (Northwest of Italy). The results obtained by the two systems show many similarities, particularly for larger catchments and for large return periods (extreme floods).Peer ReviewedPostprint (author's final draft

    Extreme Rainfall in the Mediterranean: What Can We Learn from Observations?

    Get PDF
    Abstract Flash floods induced by extreme rainfall events represent one of the most life-threatening phenomena in the Mediterranean. While their catastrophic ground effects are well documented by postevent surveys, the extreme rainfall events that generate them are still difficult to observe properly. Being able to collect observations of such events will help scientists to better understand and model these phenomena. The recent flash floods that hit the Liguria region (Italy) between the end of October and beginning of November 2011 give us the opportunity to use the measurements available from a large number of sensors, both ground based and spaceborne, to characterize these events. In this paper, the authors analyze the role of the key ingredients (e.g., unstable air masses, moist low-level jets, steep orography, and a slow-evolving synoptic pattern) for severe rainfall processes over complex orography. For the two Ligurian events, this role has been analyzed through the available observations (e.g., Meteosat Second Generation, Moderate Resolution Imaging Spectroradiometer, the Italian Radar Network mosaic, and the Italian rain gauge network observations). The authors then address the possible role of sea–atmosphere interactions and propose a characterization of these events in terms of their predictability

    Towards A Grid Infrastructure For Hydro-Meteorological Research

    Get PDF
    The Distributed Research Infrastructure for Hydro-Meteorological Study (DRIHMS) is a coordinatedaction co-funded by the European Commission. DRIHMS analyzes the main issuesthat arise when designing and setting up a pan-European Grid-based e-Infrastructure for researchactivities in the hydrologic and meteorological fields. The main outcome of the projectis represented first by a set of Grid usage patterns to support innovative hydro-meteorologicalresearch activities, and second by the implications that such patterns define for a dedicatedGrid infrastructure and the respective Grid architecture

    Study of an intrinsically safe infrastructure for training and research on nuclear technologies

    Get PDF
    Within European Partitioning & Transmutation research programs, infrastructures specifically dedicated to the study of fundamental reactor physics and engineering parameters of future fast-neutron-based reactors are very important, being some of these features not available in present zero-power prototypes. This presentation will illustrate the conceptual design of an Accelerator-Driven System with high safety standards, but ample flexibility for measurements. The design assumes as base option a 70MeV, 0.75mA proton cyclotron, as the one which will be installed at the INFN National Laboratory in Legnaro, Italy and a Beryllium target, with Helium gas as core coolant. Safety is guaranteed by limiting the thermal power to 200 kW, with a neutron multiplication coefficient around 0.94, loading the core with fuel containing Uranium enriched at 20% inserted in a solid-lead diffuser. The small decay heat can be passively removed by thermal radiation from the vessel. Such a system could be used to study, among others, some specific aspects of neutron diffusion in lead, beam-core coupling, target cooling and could serve as a training facility

    Experiences of dealing with flash floods using an ensemble hydrological nowcasting chain: implications of communication, accessibility and distribution of the results.

    Get PDF
    The forecast of flash floods is sometimes impossible. In the last two decades, Numerical Weather Prediction Systems have become increasingly reliable with significant improvements in terms of quantitative precipitation forecasts. However, despite the application of modern probabilistic hydrometeorological chains, some significant flood events remain unpredicted. This was also the case with an event that occurred on the 8th and 9th of June, 2011 in the eastern part of the Liguria Region, Italy. This event affected in particular the Entella basin, a small watershed that flows into the Mediterranean Sea. The application of a hydrological nowcasting chain as a tool for predicting flash floods in small basins with an anticipation time of a few hours (2\u20135) is presented here. This work investigated the \u2018behaviour\u2019 of the chain in the cited event as well as in other verification cases and showed how the chain could be exploited for operational purposes. The results were encouraging. However, the analysis provided evidence that the difficulties in using operational hydrometeorological tools are not always and only dependent on the performance of such systems, but also on the way the results are made available to forecasters and on the efficiency of communication with the civil protection officials

    An algorithm for real-time rainfall rate estimation by using polarimetric radar: RIME

    Get PDF
    Polarimetric radars provide measurements that describe the shape and dimensions of hydrometeors and are unaffected by calibration, attenuation, and the presence of ice. These measurements can potentially lead to a more detailed description of hydrometeors and to an improvement in quantitative rainfall rate estimation. The authors present an algorithm that exploits polarimetric measures for rain-rate estimation and investigate its application in a real-time framework by using measurements from the C-band polarimetric radar at Monte Settepani in Savona, Italy. It is based on a flowchart decision tree that allows the use of the best rain-rate retrieval algorithm, depending on the value of polarimetric variables. The methodology was applied to a real- time framework for more than a year, and the results were presented for all the significant events observed during the test period. To evaluate the performance of the algorithm, a comparison was made with rain gauge observation from a dense regional network. The performances of the algorithm were compared with those obtained by standard operational Z\u2013R formulations to evaluate the benefit of this approach for operational applications
    corecore